p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.3C42, (C2×D4).2Q8, (C22×C8).9C4, (C2×Q8).39D4, C23.1(C4⋊C4), C4.D4.3C4, (C22×C4).37D4, C4.26(C23⋊C4), (C2×M4(2)).9C4, C2.14(C23.9D4), C22.3(C2.C42), M4(2).8C22.3C2, (C2×C4).8(C4⋊C4), (C2×D4).45(C2×C4), (C2×C4).2(C22⋊C4), (C22×C4).65(C2×C4), (C2×C4○D4).2C22, (C22×C8)⋊C2.11C2, SmallGroup(128,124)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.3C42
G = < a,b,c,d,e | a2=b2=c2=1, d4=e4=c, ab=ba, ac=ca, dad-1=abc, ae=ea, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=abcd >
Subgroups: 176 in 79 conjugacy classes, 30 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C22⋊C8, C4.D4, C4.10D4, C22×C8, C2×M4(2), C2×M4(2), C2×C4○D4, (C22×C8)⋊C2, M4(2).8C22, C23.3C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2.C42, C23⋊C4, C23.9D4, C23.3C42
Character table of C23.3C42
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -i | i | -i | i | i | 1 | 1 | -1 | i | -1 | -i | i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | i | -i | i | -i | -i | 1 | 1 | -1 | -i | -1 | i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -i | i | -i | i | 1 | i | -i | i | -1 | -i | i | -i | 1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -i | i | -i | i | -i | -1 | -1 | 1 | -i | 1 | -i | i | i | i | linear of order 4 |
ρ9 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | -i | i | 1 | 1 | -i | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | i | -i | i | -i | i | -1 | -1 | 1 | i | 1 | i | -i | -i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -i | i | -i | -i | i | i | -1 | -1 | i | -i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | i | -i | i | -i | -1 | i | -i | i | 1 | -i | -i | i | -1 | 1 | linear of order 4 |
ρ13 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | i | -i | 1 | 1 | i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -i | i | -i | i | -1 | -i | i | -i | 1 | i | i | -i | -1 | 1 | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | i | -i | i | -i | 1 | -i | i | -i | -1 | i | -i | i | 1 | -1 | linear of order 4 |
ρ16 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | i | -i | i | i | -i | -i | -1 | -1 | -i | i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 2ζ85 | 2ζ87 | 2ζ8 | 2ζ83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 2ζ8 | 2ζ83 | 2ζ85 | 2ζ87 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 2ζ87 | 2ζ85 | 2ζ83 | 2ζ8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 2ζ83 | 2ζ8 | 2ζ87 | 2ζ85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 31)(2 28)(3 29)(4 26)(5 27)(6 32)(7 25)(8 30)(9 17)(10 18)(11 23)(12 24)(13 21)(14 22)(15 19)(16 20)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(26 30)(28 32)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 16 7 14 5 12 3 10)(2 17 8 19 6 21 4 23)(9 30 15 32 13 26 11 28)(18 31 20 25 22 27 24 29)
G:=sub<Sym(32)| (1,31)(2,28)(3,29)(4,26)(5,27)(6,32)(7,25)(8,30)(9,17)(10,18)(11,23)(12,24)(13,21)(14,22)(15,19)(16,20), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16,7,14,5,12,3,10)(2,17,8,19,6,21,4,23)(9,30,15,32,13,26,11,28)(18,31,20,25,22,27,24,29)>;
G:=Group( (1,31)(2,28)(3,29)(4,26)(5,27)(6,32)(7,25)(8,30)(9,17)(10,18)(11,23)(12,24)(13,21)(14,22)(15,19)(16,20), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16,7,14,5,12,3,10)(2,17,8,19,6,21,4,23)(9,30,15,32,13,26,11,28)(18,31,20,25,22,27,24,29) );
G=PermutationGroup([[(1,31),(2,28),(3,29),(4,26),(5,27),(6,32),(7,25),(8,30),(9,17),(10,18),(11,23),(12,24),(13,21),(14,22),(15,19),(16,20)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(26,30),(28,32)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,16,7,14,5,12,3,10),(2,17,8,19,6,21,4,23),(9,30,15,32,13,26,11,28),(18,31,20,25,22,27,24,29)]])
Matrix representation of C23.3C42 ►in GL4(𝔽17) generated by
1 | 15 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 15 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
13 | 0 | 0 | 0 |
13 | 4 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 13 |
0 | 0 | 0 | 15 |
G:=sub<GL(4,GF(17))| [1,0,0,0,15,16,0,0,0,0,1,0,0,0,15,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[0,0,13,13,0,0,0,4,1,0,0,0,0,1,0,0],[2,0,0,0,0,2,0,0,0,0,2,0,0,0,13,15] >;
C23.3C42 in GAP, Magma, Sage, TeX
C_2^3._3C_4^2
% in TeX
G:=Group("C2^3.3C4^2");
// GroupNames label
G:=SmallGroup(128,124);
// by ID
G=gap.SmallGroup(128,124);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,-2,56,85,120,758,570,521,248,172,4037]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^4=e^4=c,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b*c*d>;
// generators/relations
Export